59 research outputs found

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    SHARPIN Is Essential for Cytokine Production, NF-κB Signaling, and Induction of Th1 Differentiation by Dendritic Cells

    Get PDF
    Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1) gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1) and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR) agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC) from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2) and MAPK11/12/13/14 (p38 MAP kinase isoforms) and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4+ T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response

    Potential role of fibroblast-like synoviocytes in joint damage induced by Brucella abortus infection through production and induction of matrix metalloproteinases

    Get PDF
    Arthritis is one of the most common complications of human brucellosis, but its pathogenic mechanisms have not been elucidated. Fibroblast-like synoviocytes (FLS) are known to be central mediators of joint damage in inflammatory arthritides through the production of matrix metalloproteinases (MMPs) that degrade collagen and of cytokines and chemokines that mediate the recruitment and activation of leukocytes. In this study we show that Brucella abortus infects and replicates in human FLS (SW982 cell line) in vitro and that infection results in the production of MMP-2 and proinflammatory mediators (interleukin-6 [IL-6], IL-8, monocyte chemotactic protein 1 [MCP-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Culture supernatants from Brucella-infected FLS induced the migration of monocytes and neutrophils in vitro and also induced these cells to secrete MMP-9 in a GM-CSF- and IL-6-dependent fashion, respectively. Reciprocally, culture supernatants from Brucella-infected monocytes and neutrophils induced FLS to produce MMP-2 in a tumor necrosis factor alpha (TNF-α)-dependent fashion. The secretion of proinflammatory mediators and MMP-2 by FLS did not depend on bacterial viability, since it was also induced by heat-killed B. abortus (HKBA) and by a model Brucella lipoprotein (L-Omp19). These responses were mediated by the recognition of B. abortus antigens through Toll-like receptor 2. The intra-articular injection of HKBA or L-Omp19 into the knee joint of mice resulted in the local induction of the proinflammatory mediators MMP-2 and MMP-9 and in the generation of a mixed inflammatory infiltrate. These results suggest that FLS, and phagocytes recruited by them to the infection focus, may be involved in joint damage during brucellar arthritis through the production of MMPs and proinflammatory mediators.Fil: Scian, Romina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: de Simone, Emilio Adrian. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Catedra de Fisiologia Animal; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; ArgentinaFil: Vanzulli, Silvia I.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Fossati, Carlos Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Baldi, Pablo Cesar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Delpino, María Victoria. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    Negative Feedback Regulation of T Cells via Interleukin-2 and FOXP3 Reciprocity

    Get PDF
    As interleukin-2 (IL2) is central to the clonal expansion of antigen-selected T cells, we investigated the relationship between IL2 and the negative regulatory transcription factor FOXP3. We found IL2 to be responsible for T cell antigen receptor (TCR)-activated FOXP3 expression by both CD4+ and CD8+ human T cells, and as anticipated, FOXP3 expression restricted TCR-stimulated IL2 expression. However, no evidence could be found that FOXP3+ cells actively suppress IL2 expression by FOXP3- cells. These data are consistent with an IL2/FOXP3-dependent negative feedback loop that normally regulates the T cell immune response. It follows that a defect in this negative feedback loop as a result of a deficiency of either IL2 or FOXP3 will lead to a hyperproliferative autoimmune syndrome, without the necessity of invoking an active suppressive function for FOXP3+ T cells

    Metalloproteinases and their inhibitors—diagnostic and therapeutic opportunities in orthopedics

    Get PDF
    Matrix metalloproteinases (MMPs) and related enzymes (ADAMs, ADAMTS) and their inhibitors control matrix turnover and function. Recent advances in our understanding of musculoskeletal conditions such as tendinopathy, arthritis, Dupuytren's disease, degenerative disc disease, and bone and soft tissue healing suggest that MMPs have prominant roles. Importantly, MMPs are amenable to inhibition by cheap, safe, and widely available drugs such as the tetracycline antibiotics and the bisphosphonates. This indicates that these MMP inhibitors, if proven effective for any novel indication, may be quickly brought into clinical practice

    Role of IL-1β in experimental cystic fibrosis upon P. aeruginosa Infection

    Get PDF
    Cystic fibrosis is associated with increased inflammatory responses to pathogen challenge. Here we revisited the role of IL-1β in lung pathology using the experimental F508del-CFTR murine model on C57BL/6 genetic background (Cftrtm1eur or d/d), on double deficient for d/d and type 1 interleukin-1 receptor (d/d X IL-1R1-/-), and antibody neutralization. At steady state, young adult d/d mice did not show any signs of spontaneous lung inflammation. However, IL-1R1 deficiency conferred partial protection to repeated P. aeruginosa endotoxins/LPS lung instillation in d/d mice, as 50% of d/d mice succumbed to inflammation, whereas all d/d x IL-1R1-/- double mutants survived with lower initial weight loss and less pulmonary collagen and mucus production, suggesting that the absence of IL-1R1 signaling is protective in d/d mice in LPS-induced lung damage. Using P. aeruginosa acute lung infection we found heightened neutrophil recruitment in d/d mice with higher epithelial damage, increased bacterial load in BALF, and augmented IL-1β and TNF-α in parenchyma as compared to WT mice. Thus, F508del-CFTR mice show enhanced IL-1β signaling in response to P. aeruginosa. IL-1β antibody neutralization had no effect on lung homeostasis in either d/d or WT mice, however P. aeruginosa induced lung inflammation and bacterial load were diminished by IL-1β antibody neutralization. In conclusion, enhanced susceptibility to P. aeruginosa in d/d mice correlates with an excessive inflammation and with increased IL-1β production and reduced bacterial clearance. Further, we show that neutralization of IL-1β in d/d mice through the double mutation d/d x IL-1R1-/- and in WT via antibody neutralization attenuates inflammation. This supports the notion that intervention in the IL-1R1/IL-1β pathway may be detrimental in CF patients

    Viral replication is required for induction of ocular immunopathology by herpes simplex virus.

    No full text
    Corneal infection of BALB/c mice with herpes simplex virus type 1 results in a chronic inflammatory response in the stroma termed herpetic stromal keratitis (HSK). This disease is considered to be immunopathological and mediated primarily by CD4+ T cells of the type 1 cytokine profile. However, the nature of the antigens, virus or host derived, which drive the inflammatory response remains in doubt. In this study, the relevance of infection with replicating virus for the subsequent development of HSK was evaluated with immunocompetent mice as well as with SCID mice reconstituted with herpes simplex virus-immune CD4+ T cells. In the corneas of immunocompetent mice, infectious virus, viral antigen, and mRNA expression were detectable for only a brief period of time (< or = 7 days postinfection), and all were undetectable by the time clinical lesions were evident (10 to 15 days). Viral replication, however, was necessary for the development of HSK in both models, since infection with UV-inactivated virus or with mutant viruses which were incapable of multiple rounds of replication in vivo failed to induce HSK. The inactivated and mutant viral preparations did, however, stimulate T-cell immune responses in immunocompetent mice. The results are discussed in terms of possible involvement of host antigens exposed in response to transient progeny virion replication in the immune-privileged cornea

    Splice variants of human FOXP3 are functional inhibitors of human CD4(+) T-cell activation

    No full text
    FOXP3 has been identified as a key regulator of immune homeostasis. Mutations within the FOXP3 gene result in dysregulated CD4(+) T-cell function and elevated cytokine production, leading to lymphoproliferative disease. FOXP3 expression in CD4(+) T cells is primarily detected with the CD4(+) CD25(+) regulatory T-cell population. In humans the protein is detected as a doublet following immunoblot analysis. The lower band of the doublet has been identified as a splice isoform lacking a region corresponding to exon 2. The aim of this study was to investigate whether the splice variant form lacking exon 2 and a new novel splice variant lacking both exons 2 and 7, were functional inhibitors of CD4(+) T-cell activation. The data generated showed that full-length FOXP3 and both splice variant forms of the protein were functional repressors of CD4(+) T-cell activation
    corecore